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ABSTRACT

Watermarking of large language models (LLMs) generation embeds an imper-
ceptible statistical pattern within texts, making it algorithmically detectable. Wa-
termarking is a promising method for addressing potential harm and biases from
LLMs, as it enables traceability, accountability, and detection of manipulated con-
tent, helping to mitigate unintended consequences. However, for open-source
models, watermarking faces two major challenges: (i) incompatibility with fine-
tuned models (ii) vulnerability to fine-tuning attacks. In this work, we propose
WAPITI, a new method that transfers watermarking from base models to fine-
tuned models through parameter integration. To the best of our knowledge, we
propose the first watermark for fine-tuned open-source LLMs that preserves their
fine-tuned capabilities. Furthermore, our approach offers an effective defense
against fine-tuning attacks. We test our method on various model architectures and
watermarking strategies. Results demonstrate that our method can successfully in-
ject watermarks and is highly compatible with fine-tuned models. Additionally,
we offer an in-depth analysis of how parameter editing influences the watermark
strength and overall capabilities of the resulting models. 1

1 INTRODUCTION

As large language models (LLMs; Touvron et al., 2023; OpenAI et al., 2024) have been integrated
into numerous workflows and play an increasingly significant role in everyday life, controlling these
LLMs to prevent potential harm has become even more urgent. Watermarking offers a viable so-
lution by embedding traceable information in model outputs. It enables the identification of LLM-
generated content and can be used to trace back to the source model, serving as a methodological
foundation for regulatory oversight of language models.

The vast majority of the prior work on watermarks has focused on closed-source models (Kirchen-
bauer et al., 2024a; Aaronson, 2023; Kuditipudi et al., 2024), which are black boxes for users.
However, with the growing capabilities of open-source models (Touvron et al., 2023; Biderman
et al., 2023), the need for oversight of open-source models has become equally important. In other
words, effective watermarking regulation must take both closed-source and open-source models into
account to ensure comprehensive oversight and accountability.

Open-source models release their full parameters to users, and users can fully customize the gener-
ation process. Therefore, users can simply choose an unwatermarked decoding algorithm to evade
watermarking, thereby invalidating existing decoding-based watermarking methods. Gu et al. (2024)
proposed a parameter-based method that distills the model using watermarked generations. This
process, referred to as watermark distillation, ensures that the watermarks are retained within the
model parameters, preventing users from easily removing them.

∗Equal contribution.
† Corresponding author.
1The model and corresponding code will be released upon publication.
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Figure 1: Previous parameter-based watermarking (left) uses distillation which would impair mod-
els’ fine-tuned capabilities. WAPITI (middle) uses watermark-related parameters to transfer water-
marking from the base model to fine-tuned models. This method can preserve fine-tuned model
capabilities and meanwhile enables them to generate watermarked texts where the green tokens
indicate the watermarked tokens (right).

However, we observe that this method (Gu et al., 2024) would impair the fine-tuned capabilities of
models, revealing it is not compatible with fine-tuned models. Additionally, watermark distillation
incurs significantly higher computational costs compared to typical fine-tuning. Furthermore, a
severe weakness of parameter-based watermarks is their vulnerability to fine-tuning attacks, where
malicious users fine-tune the watermarked models with unwatermarked datasets to eliminate their
watermarking. As noted by Gu et al. (2024), as few as 500 steps of fine-tuning attack can remove
the watermark from models. (See Table 1 for overall comparison).

To address these limitations, we propose a new train-free watermarking strategy that transfers wa-
termarks from base models to fine-tuned models (WAPITI, WAtermark Parameter InTegratIon) as
shown in Figure 1. We discover that watermarking bears a similar effect on the output distribution of
both base models and fine-tuned models. The core of our method involves embedding watermarks
into models through direct parameter editing, ensuring compatibility with fine-tuned models. Most
importantly, WAPITI effectively defends against fine-tuning attacks by binding watermarking with
the fine-tuning capabilities of the model.

Our main contributions are as follows:

• Problem. We identify the incompatibility between current parameter-based watermarking
methods and fine-tuned models. Distillation leads to a rapid degradation of fine-tuning
capabilities and fails to effectively apply watermarking to models.

• Method. To the best of our knowledge, we propose the first watermarking for fine-tuned
models (WAPITI) based on the fact that watermarking causes aligned distribution shift in
both base models and fine-tuned models.

• Analysis. We analyze the relationship between watermarking parameters and model per-
formance, revealing how parameter-editing strength affects final outcomes. Furthermore,
we establish the relationship between watermarks and the utility of WAPITI from a learn-
ability perspective.

• Evaluation. WAPITI achieves high detectability with an AUROC of 0.92 while maintain-
ing near-identical performance on fine-tuning benchmarks for both the Llama-2-7B and
Pythia-1.4B families, demonstrating its strong effectiveness and generality.

2 PRELIMINARY

2.1 DECODING-BASED WATERMARKING

Large Language Models are generally neural networks based on the transformer architecture, de-
noted as fθ : V∗ → ∆(V), which maps a given prefix string x ∈ V∗ to a probability distribution
over the vocabulary ∆(V) for predicting the next token, denoted as fθ( · | x). The generation pro-
cess involves two main steps: logit generation followed by token sampling (Vaswani et al., 2023).
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Method
Closed-source Open-sourced Problem

LLMs Base LLMs Fine-tuned LLMs

Decoding-based ✓ ✗ ✗ Easily removable by user
Distillation-based N/A ✓ ✗ It undermines capabilities
WAPITI (ours) N/A N/A ✓ N/A

Table 1: A taxonomy of LLM watermarking. ”N/A” indicates that the method is not designed for
the corresponding setting.

Decoding-based watermarks are embedded in either stages of generation with the aim of guiding the
output distribution toward a targeted direction, incorporating traceable information for detection.
For instance, KGW (Kirchenbauer et al., 2024a) increases the frequency of specific tokens during
the generation process, and the detector identifies the origin of a text based on the occurrence rate
of these tokens. More specifically, a watermarking algorithm W employs a watermark key ϕ to
modify the original next-token distribution fθ( · | x) into a watermarked version. The watermark
detectorD, using the same watermark key ϕ, can then retrieve the embedded watermark information.
In general, given a text x and a watermark key ϕ, the detector D calculates a p-value for the null
hypothesis that the text x is unrelated to W and ϕ. A text is classified as model-generated if its
p-value falls below a predefined threshold.

The key evaluation metrics of watermarking are: (i) Detectability: The watermark must ensure
that all content generated by the model can be reliably detected by the detector. (ii) Utility: The
integration of the watermark should not significantly interfere with the original capabilities of the
model. (iii) Security: The watermark should ensure that its hidden pattern within the text is difficult
to remove unless a substantial portion of the model output is significantly altered. And for open-
source models, the watermark cannot be removed without impairing their capabilities.

Logit-based: KGW is a watermarking strategy applied directly to output logits of the model (Al-
gorithm 2 in Kirchenbauer et al. (2024a)). During the next token generation, the vocabulary is
pseudorandomly split into green and red lists based on the previous k tokens. When k = 0 (Zhao
et al., 2023), the green and red lists are fixed, and when k ≥ 1, the lists are determined by the previ-
ous context. The green list contains γ ∈ (0, 1) proportion of the entire vocabulary, and an additional
watermark shift δ is added to the logits of the tokens in the green list. This increases the probability
of the green tokens being selected in the final generation. During detection, the p-value is calculated
by checking whether the proportion of green list tokens exceeds the predefined γ.

Sampling-based: AAR is the Gumbel softmax scheme from Aaronson (2023), which is a special
sampling strategy. When generating xi, it hashes the previous k tokens using the key ϕ to generate
a pseudorandom score sequence ri for the entire vocabulary V where ri ∈ R|V| whose entries are
uniformly distributed in [0, 1]. Given the probability distribution pi ∈ ∆(V) of the next token xi,
AAR uses Gumbel-Max sampling strategy: xi = argmaxj∈|V|(log pi,j − log(− log ri,j)) (Cane &
Luce, 1960), which introduces some randomness into the sampling stage by adding Gumbel noise
ri. This sampling strategy would result in watermarked texts having comparative higher score sums.
During detection, a larger score sum corresponds to a lower p-value against the null hypothesis.

2.2 WEIGHT-BASED WATERMARKING

Since the weights of open-source models are fully released, users can modify the decoding method
or apply any post-processing to the logits, making decoding-based watermarks easy to remove. The
most feasible approach2 for watermarking is to embed the watermark into the model parameters, en-
abling LLMs to generate watermarked text under natural sampling distribution. Current research (Gu
et al., 2024) has shown that LLMs can learn watermarks via distillation and generate detectable wa-
termarked texts. By using decoding-based watermark strategies to generate watermarked texts as
distillation data, Gu et al. (2024) has verified the learnability of multiple watermarks on Llama-2-7B
and Pythia-1.4B models. However, we found that this parameter-based method is specifically de-

2To the best of our knowledge, this is the only approach for watermarking open-source LLMs that cannot
be easily removed by users.
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signed for base LLMs. In the fine-tuning setting, it significantly impairs the fine-tuned capabilities,
as we will demonstrate in § 3.1.

3 METHOD

3.1 MOTIVATING STUDY

Limitation of current weight-based watermarking. The current weight-based method enables
the base model to generate watermarked texts via distillation. In this paper, we explore whether
the distillation-based approach is compatible with fine-tuned models. Specifically, we ask: can
watermark distillation retain the fine-tuned capabilities of model while embedding the watermark
into the fine-tuned model? To address this question, we conduct a preliminary experiment.

In this experiment, we use math fine-tuned Llama-2-7B and decoding-based watermarking strategies
to generate watermarked math-related data, which will be used in watermark distillation. Detailed
experiment setup can be found in Appendix A.

Figure 2 compares the watermark detectability (measured by p-value) and fine-tuning utility be-
tween the original fine-tuned model and the watermark-distilled models. The utility of the model on
GSM8K drops sharply to nearly zero, and the output text shows poor detectability, with a p-value
close to the baseline of 0.5.

To better understand this phenomenon, we further analyze the distillation data generated by the
math-fine-tuned model and identify two main reasons: (i) The quality of the watermarked math
data is inferior to that of the original fine-tuning dataset. Table 3 presents several samples from
the original benchmark dataset alongside the answers generated by the math model. Although the
generated answers might still be correct, they often contain flawed procedures or random repetitive
sequences. Such data can confuse the model and result in a performance decline. (ii) The quantity
of watermarked math data is insufficient for the student model to learn the watermark effectively.
As noted in Gu et al. (2024), approximately 1.3 million samples are required for a distilled model
to internalize the watermark. With only 7.3k samples in the GSM8K training split and further
filtering due to the 40% accuracy of model, our final dataset was just 0.6% of the required size. The
insufficient distillation data makes the generated outputs lack detectability.

In a nutshell, our experiments demonstrate that current distillation-based watermarking is incom-
patible with fine-tuned models. This is primarily due to the small size of most fine-tuning datasets,
which are insufficient for distillation. Additionally, the quality of watermarked samples deteriorates
compared to the original ones, leading to a decline in the fine-tuning capabilities of model.

Universal distribution shift from watermarking. The primary issue with the current weight-
based method is the distillation phase, which underscores the need for a train-free approach to wa-
termark fine-tuned models. To this end, we aim to investigate whether there are any similarities
between the base models and fine-tuned models when watermarked.

To be specific, we analyze the n-gram distribution in the watermarked outputs of both the base and
fine-tuned models. According to watermarking schemes, n-gram could be the smallest meaningful
unit, making them a natural starting point. Check Appendix C for detailed justification.

Our experiment compares the n-gram distribution similarities between unwatermarked and water-
marked texts generated by the base model and fine-tuned model, respectively. We used Llama-2-7B
and the math fine-tuned Llama-2-7B (Agarwalla et al., 2024) to generate 640k samples with and
without watermarking. The watermark used were kgw-k1-gamma0.25-delta2 (Kirchenbauer et al.,
2024a) and aar-k2 (Aaronson, 2023).

We tokenize all generated text into n-grams, where n is determined by the number of tokens used
to compute the watermarked next-token probability, as mentioned in § 2.1. We then calculate
the Jensen–Shannon (JS) divergence (Lin, 1991) between the watermarked and unwatermarked n-
grams. To reduce noise, we filter out n-grams whose frequencies are below a threshold.

The results, shown in Figure 3, indicate that the JS divergence is consistently smaller for water-
marked n-gram compared to unwatermarked n-gram, which suggests that the distribution of wa-
termarked n-gram is more similar between base models and fine-tuned models. This indicates that
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watermarking distorts the output of both the base and fine-tuned models in similar ways by increas-
ing the frequency of watermarked n-grams in the final generation.

3.2 WATERMARK PARAMETER

In this section, we focus on deriving the watermarked parameters of fine-tuned models. As men-
tioned in §2.1, watermarks only perturb the next-token generation xt according to previous k to-
kens xt−k, · · · , xt−1 and watermark key ϕ, so that watermark perturbation in next-token probability
fθ(x)

3 remains the same across different models, where x is the input prompt. We denote the
watermark perturbation as δ · g(x), where δ represents the intensity of the shift, analogous to the
watermark shift δ in KGW and g(x) is analogous to the mask of green list in KGW watermarking
that indicates which part of vocabulary will be applied watermark shift. According to experiments
in C, we observe that model parameters can learn watermarking. Let θBase,θ

†
Base represent parame-

ters of the base model and the watermark-distilled base model respectively. So we have:

fθ†
Base

(x) = fθBase(x) + δBase · g(x). (1)

Similarly, we use θFT and θ†
FT to represent the parameters of the fine-tuned (FT) models, as well as

its watermark-distilled counterpart respectively. Our ultimate goal is, given an unwatermarked θ, to
find the parameter θ†

FT such that:

fθ†
FT
(x) = fθFT(x) + δFT · g(x), (2)

where δFT is a hyperparameter that controls the watermark detectability.

Let ∆θBase := θ†
Base − θBase and ∆θFT := θ†

FT − θFT denote the parameter differences introduced
by watermark distillation for the base and fine-tuned models, respectively. We can eliminate g(x)

by substituting θBase,θ
†
Base into Eq. (1) and rearranging it as a Taylor expansion. δBase denotes the

watermark shift of base model:

g(x) =
1

δBase

(
fθ†

Base
(x)− fθBase(x)

)
=

1

δBase
⟨∇θfθBase(x),∆θBase⟩+O(∥∆θBase∥2). (3)

Furthermore, we observe in Appendix E.3, that the parameter difference between the fine-tuned
model and the base model, θFT − θBase, is approximately orthogonal to the parameter difference
caused by watermarking, θ†

Base − θBase:

⟨θFT − θBase,θ
†
Base − θBase⟩ ≈ 0. (4)

3For brevity, we identify the next-token probability predictor fθ( · | x) : V → R as a vector fθ(x) ∈ ∆(V).

5



Let⊗ denote the tensor product between differentiation operators, and let×1,×2 denote the mode-1
and mode-2 tensor–matrix product, respectively. Let HBase(x) := ∇θ⊗∇θfθBase(x) be the Hessian.
As shown in prior studies, every channel of HBase(x) is approximately the identity matrix I (Jiao
et al., 2024; Yang et al., 2024). Combining it with our observation in Eq. (4), we hypothesize that:

HBase(x)×1 (θFT − θBase)×2 (θ
†
Base − θBase) ≈ 0. (5)

The first-order Taylor expansion of∇θfθFT(x) around θ = θBase is:

∇θfθFT(x) = ∇θfθBase(x) +HBase(x)×1 (θFT − θBase) +O(∥θFT − θBase∥2), (6)

HBase(x)×1 (θFT − θBase) ≈ ∇θfθFT(x)−∇θfθBase(x). (7)

Next, substituting Eq. (7) into Eq. (5), we find that the gradient difference between the fine-tuned
and base models, when multiplied by the watermarked parameter difference of base model, is ap-
proximately zero:

(∇θfθFT(x)−∇θfθBase(x))∆θBase ≈ 0. (8)

By rearranging Eq. (8), we conclude that the gradients of the fine-tuned and base models are approx-
imately equal when applied to the watermarked parameter difference:

∇θfθFT(x)∆θBase ≈ ∇θfθBase(x)∆θBase. (9)

In this way, we obtain the relationship between the gradient of the fine-tuned model and base models.
And we now proceed to derive our target fθFT(x). First, by substituting g(x) from Eq. (3) into
Eq. (2):

fθ†
FT
(x) = fθFT(x) +

(
δFT

δBase
⟨∇θfθBase(x),∆θBase⟩+O(∥∆θBase∥2)

)
. (10)

We define λFT = δFT
δBase

, where δFT is a hyperparameter, making λFT a tunable factor. Next, we
substitute the gradient of base model in Eq. (10) with the gradient of fine-tuned model using Eq. (9):

fθ†
FT
(x) ≈ fθFT(x) + ⟨∇θfθFT(x), λFT ·∆θBase⟩+O

(
∥∆θBase∥2

)
, (11)

≈ fθFT+λFT·∆θBase(x). (12)

We treat Eq. (11) as a Taylor expansion of the next-token probability of the model with respect to its
parameters. Based on Eq. (12), we can select:

θ†
FT := θFT + λFT ·∆θBase. (13)

Algorithm 1 WAPITI

Input: base model parameter θBase, fine-tuned
model parameter θFT, watermark intensity
factor λFT

Output: watermarked fine-tuned model parame-
ter θ†

FT

1: θ†
Base ←WatermarkDistillation(θBase)

2: ∆θBase ← θ†
Base − θBase

3: θ†
FT ← θFT + λFT ·∆θBase

According to derivation, we propose WAter-
mark Parameter InTegratIon (WAPITI), which
integrates watermark-related parameters of
base model to fine-tuned models. The algo-
rithm is shown in Alg. 1. WAPITI is compat-
ible with various watermarking strategies: after
distilling a base model with the desired water-
mark (Step 1), the watermark can be seamlessly
transferred to fine-tuned models without addi-
tional costs (Step 3). This approach provides
an efficient and effective solution for regulating
open-source models.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

In this section, we design experiments to evaluate the utility of WAPITI in two key aspects: water-
mark strength and fine-tuning ability, tested across various models and watermarking strategies.
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Watermark and hyperparameters. We experiment with two representative decoding-based wa-
termarks, KGW and AAR, with different hyperparameters. To ensure a fair and consistent compari-
son, we adopt the same watermarking hyperparameters as used by Gu et al. (2024). Specifically, for
KGW, we set k = {0, 1, 2}, γ = 0.25, and δ = {1, 2}; and for AAR, we use k = {2, 3, 4}. The
coefficient λFT for watermark parameter integration ranges from [0, 4].

Dataset and model choices. To ensure the generalizability of WAPITI, we conduct experiments
on two widely used LLM families: Llama-2-7B and Pythia-1.4B, which differ in both architecture
and parameter Their popularity in the community further ensures that our experiments reflect real-
world utility. We utilize the watermark-distilled base models from Gu et al. (2024).

To test the compatibility of WAPITI with fine-tuned models, we focus on three key fine-tuning
capabilities: instruction-following, question answering, and math. We will refer to corresponding
fine-tuned models as Llama-chat, Llama-QA, Llama-gsm8k, and Pythia-chat in the experiment re-
sults. Detailed information on the fine-tuned model selection can be found in Appendix D. The
benchmark datasets used are OpenWebText (Gokaslan & Cohen, 2019), MMLU (Hendrycks et al.,
2021), and GSM8K (Cobbe et al., 2021), respectively.

4.2 EVALUATION METRICS

Following the evaluation methods used in Kirchenbauer et al. (2024a), Kuditipudi et al. (2024), and
Gu et al. (2024), we evaluate the models on 5,000 samples drawn from the RealNewsLike subset of
the C4 dataset (Raffel et al., 2023). The evaluation includes the following metrics:

Watermark detectability. To assess watermark detectability, we compute the AUROC (Area
Under the Receiver Operating Characteristic Curve), which evaluates the ability to distinguish be-
tween watermarked and unwatermarked content. The AUROC is calculated using an equal number
of human-generated texts and model-generated watermarked content, both truncated to the same
length for consistency. Additionally, we compute the median p-values for watermark detection
across all generations and use the median p-value as a secondary metric. Lower p-values indicate
stronger watermark detectability.

Generation quality. Generation quality is evaluated using two metrics: perplexity and seq-rep-3
(Sequence Repetition for 3-grams). Perplexity provides an overall assessment of the generated text
and is calculated using Llama-2-13B. Seq-rep-3 measures repetition by calculating the proportion
of repeated trigrams (Welleck et al., 2019).

Fine-tuning abilities. To assess whether WAPITI preserves the fine-tuned capabilities of models,
we evaluate the performance of WAPITI fine-tuned models on the following benchmarks: i) Ques-
tion Answering: We use the full MMLU (Hendrycks et al., 2021) dataset to assess the QA ability of
models. This dataset contains approximately 14,000 questions from 57 domains. ii) Math: We eval-
uate the model on the test split of GSM8K (Cobbe et al., 2021), which consists of 1,319 grade-school
math word problems designed to assess multi-step reasoning and arithmetic skills.

4.3 RESULTS

Watermarking results. Table 2 presents the results of the watermark strength and generation
quality of the WAPITI model. Since multiple hyperparameter sets were tested for each watermarking
strategy, the result table displays the average across all hyperparameter sets for each watermark, with
the embedded watermark parameter integration coefficient λFT fixed to 1.0. Detailed results for each
hyperparameter, as well as the full set of results for different values of λFT, along with corresponding
analysis, can be found in Appendix F.

The results show that WAPITI effectively transfers the watermark to other models, achieving low p-
values and high AUROC scores, indicating strong detectability. Additionally, the generation quality
metrics confirm that WAPITI preserves the models’ original capabilities. However, the detectability
in WAPITI fine-tuned models is slightly lower compared to the watermark-distilled base models,
suggesting that some watermarking information is lost during the transfer process.

Of the two watermarks tested, KGW consistently outperforms AAR in watermark transfer, exhibit-
ing higher AUROC scores. This trend is also observed in the watermark-distilled models from Gu
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Scheme Model

Watermark Detectibility Generation Quality

p-value(↓) AUROC(↑) Perplexity(↓) seq-rep-3(↓)

DECO WAPITI DECO WAPITI DECO WAPITI DECO WAPITI

KGW

Llama-distilled 4.2·10−25 3.5·10−15 0.99 0.94 5.91 5.85 0.05 0.03
Llama-gms8k 5.7·10−18 1.3·10−12 0.96 0.92 4.03 4.15 0.19 0.12
Llama-chat 1.9·10−8 7.9·10−7 0.92 0.90 3.12 3.16 0.08 0.05
Llama-QA 5.1·10−13 8.1·10−7 0.96 0.91 3.50 3.44 0.08 0.04

Pythia-distilled 2.6·10−12 6.9·10−4 0.98 0.78 12.4 20.0 0.04 0.02
Pythia-chat 5.3·10−11 1.48·10−1 0.90 0.61 7.23 6.86 0.06 0.07

AAR

Llama-distilled 4.2·10−88 3.6·10−12 1.00 0.80 27.1 5.18 0.05 0.06
Llama-gms8k 6.3·10−92 6.2·10−8 1.00 0.77 9.13 3.73 0.15 0.14
Llama-chat 1.6·10−57 7.4·10−7 1.00 0.78 20.2 3.18 0.06 0.07
Llama-QA 5.3·10−64 4.4·10−6 1.00 0.78 5.9 3.45 0.06 0.07

Pythia-distilled 2.0·10−73 7.3·10−18 1.00 0.85 10.5 10.8 0.03 0.21
Pythia-chat 3.3·10−66 2.08·10−1 1.00 0.61 10.1 9.41 0.03 0.07

None
Base Llama 5·10−1 0.50 3.14 0.03

Base Pythia 5·10−1 0.50 10.3 0.04

Table 2: Main results for watermark detectability and generation quality of WAPITI and decoding-
based watermarks across different strategies. The displayed results represent the average perfor-
mance, with an integration coefficient of λFT = 1. DECO refers to the original decoding-based
watermark used as the baseline.

et al. (2024), which we partly attribute to the complexity of the AAR scheme, as it combines logits
with pseudorandom scores. A more detailed analysis of this difference is provided in Appendix E.1.
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Figure 4: Performance of WAPITI models on
fine-tuning ability benchmarks are intact af-
ter watermarking.

Comparing the performance across different mod-
els, the watermark detectability in Pythia models is
lower than in Llama models. Analyzing the gen-
erations of Pythia models suggests that this differ-
ence is largely due to the models’ inherent capabil-
ities. Nevertheless, the parameter integration yields
p-values significantly below the baseline of 0.5, in-
dicating that watermarking-related knowledge is still
injected to a certain degree.

Fine-tuned ability results. Figure 4 compares
the fine-tuning performance of WAPITI models with
the base model and original fine-tuned models. For
both QA and Math tasks, WAPITI models show per-
formance nearly identical to the original fine-tuned
models for both KGW and AAR watermarking,
demonstrating that WAPITI effectively preserves the
models’ original capabilities and is fully compatible
with fine-tuned models.

Combined with the results from Table 2, we con-
clude that WAPITI is an effective and efficient wa-
termarking method for fine-tuned models, allowing
them to retain the watermark while preserving both generation quality and fine-tuned capabilities.

4.4 ANALYSIS

In this section, we conduct additional experiments to examine how watermark parameters impact the
overall WAPITI models’ watermark detectability and capabilities, providing insights into WAPITI
for better utilization and future works.
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First, we examine how the norm of watermark parameter integration and the hyperparameters of
the watermarking schemes impact detectability and generation quality. We vary the coefficient λFT
within the range [0, 4] to test WAPITI models’ median p-values and perplexity. The results show
that λFT regulates the interference between watermarked and model parameters, and detectability
strongly correlates with watermark learnability. Full results and analysis are in Appendix E.1.

Second, we evaluate whether WAPITI can defend against fine-tuning attacks by binding fine-tuned
capabilities with watermarking. The results show that malicious users would significantly degrade
the fine-tuned capabilities of models when attempting to remove the watermark through fine-tuning
attacks. Full results can be found in Appendix E.2.

Finally, we analyze the relationship between the fine-tuned and watermarked models at the parame-
ter level using cosine similarity (Ilharco et al., 2023), illustrating how WAPITI remains compatible
with fine-tuned models. This analysis also provides strong evidence that watermarked parameters in-
deed encode knowledge about the watermarking schemes. Full results are detailed in Appendix E.3.

5 RELATED WORK

Text steganography. Steganography involves embedding information within texts for the pur-
poses of detection or secret communication. Steganography methods can be categorized into edit-
based and generative approaches. Edit-based methods include rule-based transformations (Wil-
son et al., 2014; Wilson & Ker, 2016), synonym-based substitution (Shirali-Shahreza & Shirali-
Shahreza, 2008), and neural network-based transformations (Fang et al., 2017; Abdelnabi & Fritz,
2021; Ueoka et al., 2021). On the other hand, generative methods embed information directly during
the text generation process (Ziegler et al., 2019; Dai & Cai, 2019).

Text watermarking. Earlier works in text watermarking typically embedded information through
post-processing of texts, closely resembling steganography (Venugopal et al., 2011; Yang et al.,
2021). More recent studies have shifted towards decoding-based watermarking, hiding information
by perturbing the text during the decoding phase (Kirchenbauer et al., 2024b; Aaronson, 2023; Zhu
et al., 2024; Krishna et al., 2023; Kuditipudi et al., 2024; Zhao et al., 2023; Christ et al., 2023; Wu
et al., 2024; Liu & Bu, 2024; Giboulot & Teddy, 2024; Lu et al., 2024; Ren et al., 2024; Wang
et al., 2024). Different watermarking strategies bring various improvements: Takezawa et al. (2023)
enhance logit-perturbation, while Hu et al. (2023); Zhao et al. (2024) optimize sampling strategies.
Additionally, Lee et al. (2024); Li et al. (2023); Yang et al. (2021) explore code watermarking.

Recent advancements have introduced parameter-based watermarking, which embeds watermarks
through distillation (Gu et al., 2024). Other studies focus on investigating typical watermarking
behaviors (Luo et al., 2024; Singh & Zou, 2023), and some establish robust statistical frameworks
for watermarking (Huang et al., 2024; Li et al., 2024). Surveys provide detailed definitions and
classifications of text watermarking techniques (Jawahar et al., 2020; Liu et al., 2024; Cai et al.,
2024), while benchmarks offer comprehensive evaluations of watermarks (Tu et al., 2024).

Model interventions. Beyond fine-tuning, researchers have explored parameter-level interven-
tions to modify model behaviors. Key approaches include model patching (Goel et al., 2020; Ilharco
et al., 2022; Murty et al., 2022; Sung et al., 2021), parameter editing (Mitchell et al., 2022a;b; San-
turkar et al., 2021; Ilharco et al., 2023), and model alignment (Askell et al., 2021; Glaese et al.,
2022; Kasirzadeh & Gabriel, 2022). Compared to retraining or fine-tuning, model intervention of-
fers a more efficient way to introduce new capabilities into models.

6 CONCLUSION

In this paper, we propose WAPITI, a training-free, parameter-based watermarking scheme designed
for fine-tuned open-source models. We evaluate its effectiveness on various model architectures
and watermarking strategies. Our method resolves the key technical challenges of applying water-
marks to fine-tuned models while retaining the fine-tuned model abilities. Furthermore, we analyze
the relationship between parameter integration and the model performance, using cosine similarity
analysis to demonstrate that the watermarking parameters encode n-gram related knowledge.
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Future work could further enhance WAPITI by developing watermarking strategies better suited to
watermark transfer or optimizing the watermark distillation process to produce better watermark-
distilled base models. Additionally, refining the extraction procedure for watermark parameters
could improve the efficiency of watermark transfer. This would also minimize interference with
other model parameters, helping to preserve the overall model performance.
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A FINE-TUNED MODELS’ WATERMARKING DISTILLATION SETUP

We use Neuralmagic Llama-2-7B-gsm8k (Agarwalla et al., 2024) as both the teacher and student
models. The primary dataset is GSM8K Cobbe et al. (2021), and we select the watermarking
schemes kgw-k0-gamma-0.25-delta-2 and aar-k3, as they are comparatively easier to learn from.

First, we generated watermarked samples of 256 tokens, using a 50-token prefix from GSM8K as
the prompt. We then filtered these watermarked generations based on the correctness of their final
answers, yielding 2,632 correct samples to use as training data for distilling the Llama-2-7B-gsm8k
model.

Next, we fine-tuned Llama-2-7B-gsm8k on the watermarked samples for 3 epochs, with 43 steps
per epoch, using a batch size of 64 sequences and a sequence length of 256 tokens. The maximum
learning rate was set to 1e−5, with cosine learning rate decay and linear warmup over 20 steps. We
used the AdamW optimizer with (β1, β2) = (0.9, 0.999) and no weight decay. Each training run
took approximately 50 minutes on 4 NVIDIA A100 80GB GPUs.

B DETAIL DEFINITION FOR WATERMARK SCHEMES

In this section, we will provide rigid definitions of watermark schemes used in this work:
KGW (Kirchenbauer et al., 2024a) and AAR (Aaronson, 2023).

KGW For the KGW watermark, we use the same notation as described in the main text: WKGW

represents the watermarking algorithm, fθ(· | x) denotes the next-token probability, and ϕ is the wa-
termark key. The hyperparameters k, γ, δ are specific to KGW, where k defines how many preceding
tokens are used to compute the corresponding green list of next token, γ indicates the proportion of
the vocabulary in the green list, and δ refers to the watermark shift applied to the tokens in the green
list. The full logit generation process for KGW is defined as:

fKGW
θ (x, ϕ, k, γ, δ) = softmax

(
log(fθ(· |x)) + δ · WKGW (xi−k, · · · , xi−1;ϕ; γ; |V|)

)
(14)

HereWKGW is a hash function that generates the green token list mask according to the watermark
hyperparameter.

The detection of the KGW watermark is:

DKGW (x, ϕ, γ) = 1−Bino

len(x∑
t=0

xt · WKGW (xt−k, · · · , xt−1;ϕ; γ; |V|)


︸ ︷︷ ︸

number of green list tokens in x

(15)

where the term within the parenthesis is calculating how many tokens with the green list and Bino
here refers to the cumulative distribution function for binomial distributed random variables.

AAR For the AAR watermark, we use the same notation as well. WAAR represents the water-
marking algorithm, fθ(· | x) denotes the next-token probability, and ϕ is the watermark key. AAR
only has one hyperparameter k that denotes how many preceding tokens are used to compute the
score sequence ri.

ri =WAAR(xi−k, · · · , xi−1, ϕ) ∼ Unif(0, 1)|V| (16)

The full token sampling process for AAR is defined as:

xAAR
i = (argmax

j∈|V|
(log(fθ(· |x))j − log(− log(rji )) (17)

The detection of the AAR watermark is:

DAAR(x, ϕ, γ) = 1−Gamma(len(x)− k, 1)

len(x)∑
t=0

− log

1−WAAR(xi−k, · · · , xi−1, ϕ)xt︸ ︷︷ ︸
cprrespoding score of xi




(18)

17



C PRELIMINARY FOR N-GRAM DISTRIBUTION ANALYSIS

Gu et al. (2024) has demonstrated that the distilled model achieves satisfactory watermarking per-
formance. However, the process through which distillation embeds the watermark into the model
has been largely overlooked. Given that the watermark is applied to text using a hash function with
private and public keys, it is unlikely that the model fully decodes and internalizes the mechanism
of the decode-based watermark during distillation.

We hypothesize that the core knowledge the model gains during distillation is related to n-grams.
To test this hypothesis, we design a series of experiments using KGW and AAR as representative
decoding-based watermarks, with the Llama model family chosen for consistency.

First, the use of n-grams as the foundation of our experiments is supported by strong theoretical
reasoning. As defined for KGW and AAR in B, the detection of xi depends only on xi−k, . . . , xi−1,
allowing us to partition a sentence into multiple (k + 1)-grams for detection purposes.
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Figure 5: The results show the proportion of
watermarked content generated from prefixes of
high- and low-frequency watermarked n-grams in
the distillation data. The baseline uses prefixes
from unwatermarked n-grams in the same data.

Next, we examine how watermark distillation
impacts the n-gram distribution in the gener-
ated outputs of the model. In this experiment,
we use 256,000 samples of length 50 from the
training data employed during the watermark
distillation of the k1-gamma0.25-delta2 water-
mark. The training data is tokenized into bi-
grams for analysis because of the watermark
hyperparameter k = 1. Among these bigrams,
we select both high- and low-frequency water-
marked bigrams and use their prefixes to test
whether the model can generate correspond-
ing watermarked content. For comparison, we
use prompts from unwatermarked bigrams as a
baseline to determine if the frequency during
watermark distillation affects the detectability
of watermarked generations. Results show that
the model tends to generate watermarked con-
tent more consistently for high-frequency bi-
grams from the watermarking distillation. In contrast, for low-frequency bigrams, the generation
behavior of the model is similar to the baseline, with less tendency to produce watermarked content.

This result validates that the model learns the watermarking strategy at the n-gram level, confirming
that analyzing the model from an n-gram perspective is appropriate.

D FINE-TUNED MODEL CHOICES IN MAIN EXPERIMENT

For Llama models, we choose alpaca-7b-reproduced-llama-2 (Dai et al., 2024) as QA fine-tuned
model, Llama-2-7b-gsm8k (Agarwalla et al., 2024) as math fine-tuned model and Llama-2-7b-chat-
hf Touvron et al. (2023) as instruction fine-tuned model. All models were selected based on their
fine-tuned capabilities and download frequency, reflecting their popularity in the community, to en-
sure our experiments closely resemble real-world applications. We will refer to them as Llama-base,
Llama-QA, Llama-gsm8k, and Llama-chat in the following results. For Pythia models, because of
the ability limit of Pythia-1.4B, we only choose Pythia-1.4B-sft (Labs, 2024), which will be referred
to as Pythia-base and Pythia-chat.

E ADDITIONAL EXPERIMENTS

E.1 HOW WILL THE WATERMARK PARAMETER AFFECT THE MODEL PERFORMANCE?

We evaluated the watermark detectability of model and generation quality across varying coefficients
λFT for watermark parameter integration. Figure 6 illustrates the watermark detectability (measured
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Figure 6: Watermark detectability and output perplexity of the WAPITI model as a function of the
watermark integration coefficient λFT (left and middle). The scatter plot shows the relationship
between perplexity and detectability (right).

by p-value) and perplexity of the WAPITI Llama-math model at different values of λ, for both the
KGW and AAR watermarks. Complete plots for other models are available in Appendix F.

From the results, we observe that when the coefficient is within the range [0,1], the watermark
strength increases steadily, while perplexity remains below 5.0, indicating that watermark parameter
integration does not interfere with the generation capability of model. Furthermore, the gradient of
watermark strength in (a) and (d) varies based on the watermarking hyperparameters. For KGW,
smaller k means the next token is influenced by fewer preceding tokens and a larger δ corresponds
to better detectability. Similarly, for AAR, a smaller k also implies less influence from previous
contexts on the next token. Thus, a smaller k and a larger δ make the watermark easier for the
model to learn, consistent with the findings from Gu et al. (2024). The results in Figure 6 (a) and
(d) strongly corroborate this, as the gradient of watermark strength aligns with the learnability of
different watermarks. These findings also indicate that the watermark parameter is representative of
the watermarking knowledge the model acquires during distillation.

However, as the coefficient exceeds 1.0, two watermarks exhibit distinct patterns. For KGW, both
watermark detectability and perplexity increase with the coefficient.S AAR exhibits a parabolic be-
havior in both watermark strength and perplexity, with their extrema occurring at different parameter
values. This divergence suggests that although the watermark parameter has general applicability
across fine-tuned models, it’s not totally independent of other parts of models and may cause sub-
stantial interference when the coefficient λ becomes large.

Figure 6 (c),(f) present scatter plots of perplexity versus p-value, highlighting the key trade-off in
watermarking: watermark detectability versus impact on output quality. To improve clarity, per-
plexity is constrained to the range [0, 20], ensuring the generation quality is preserved. As shown
in Figure 6, KGW displays a linear relationship between watermark strength and perplexity, reflect-
ing the expected trade-off. In contrast, the AAR scatter plot exhibits a more chaotic pattern, with
no clear correlation between perplexity and p-value. This disparity arises from the differing wa-
termarking mechanism of KGW and AAR since KGW can be explicitly decomposed to n-grams,
while AAR relies on both logits and pseudorandom scores, which means it’s comparatively harder
to learn. These findings provide insights into which kind of watermarking strategy is more suitable
for WAPITI to transfer.

E.2 CAN THE WATERMARK VECTOR PROTECT FINE-TUNED ABILITIES?
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Figure 7: This plot illustrates the fine-tuned capa-
bility and watermark detectability of the WAPITI
model following a fine-tuning attack. The results
indicate that fine-tuning attacks not only degrade
the fine-tuning performance of the model but also
impair its ability to eliminate watermarks, thereby
forming an effective defense against such attacks.

A critical challenge for weight-based water-
marking is defending against fine-tuning at-
tacks. Watermark fragility in the face of fine-
tuning is particularly difficult to address, as
fine-tuning can be viewed as a form of ”reverse
watermarking.” Just as distillation can embed a
watermark into the model, fine-tuning can po-
tentially remove it, restoring the output distri-
bution of the model to its original state.

Recall the definition in the § 2.1, the Utility of
a watermark is defined by the difficulty of re-
moving it without significantly altering the gen-
erated content or impairing the inherent capa-
bilities of model. To defend against fine-tuning
attacks, we can bind watermarking to the fine-
tuned abilities of model. In doing so, if ma-
licious users attempt to fine-tune the model to
remove the watermark, the fine-tuned capabili-
ties of the model will also be severely compro-
mised, thereby enhancing the robustness of the
watermark in fine-tuned models. In this exper-
iment, we select the Llama-Math and Llama-QA, each embedded with the k0-gamma0.25-delta2
watermark. Then we test how watermark strength and fine-tuning performance are affected after
additional fine-tuning.

As shown in Figure 7, both models’ watermark detectability and fine-tuning capabilities declined
significantly after just 400 steps of fine-tuning attack.

E.3 HOW CAN THE WATERMARK VECTOR BE COMPATIBLE WITH FINE-TUNED ABILITIES?
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Figure 8: The plot shows cosine similarity, indicating
clear orthogonality between watermark parameter differ-
ences and fine-tuning parameter differences.

Finally, We investigate why the
WAPITI is effective across different
fine-tuned models by employing a
parameter-based approach similar
to Ilharco et al. (2023). We calculate
the cosine similarity between the
watermark parameter and task vec-
tors (Ilharco et al., 2023), where the
task vectors represent the parameter
differences between the fine-tuned and
base models.

As shown in Figure 4, the watermark
parameters exhibit strong orthogonal-
ity with the fine-tuned parameters, min-
imizing interference between water-
marking and fine-tuning. This likely
explains why WAPITI preserves fine-
tuning capabilities.

Additionally, the watermark param-
eters from different schemes also
demonstrate clear orthogonality. Inter-
estingly, higher similarity is observed
within the KGW family, particularly when k values are the same. Since identical random seeds
and sampling mechanisms are used when k values are the same, this generates identical green lists,
leading models to learn the same n-grams. This similarity further indicates that watermark parame-
ters encode specific knowledge about the watermarking schemes. Overall, this experiment provides
strong analytical evidence supporting the effectiveness of WAPITI.
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F DETAILED RESULTS

F.1 LLAMA-2-7B-DISTILLED
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Figure 9: P-value and perplexity results of the Llama-2-7B sampling-based watermark-distilled
model across varying λFT coefficients.

F.2 LLAMA-2-7B-QA
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Figure 10: P-value and perplexity results of the WAPITI alpaca-7b-reproduced-llama-2 across vary-
ing λFT coefficients.
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F.3 LLAMA-2-7B-MATH
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Figure 11: P-value and perplexity results of the WAPITI Llama-2-7b-gsm8k across varying λFT
coefficients.
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Figure 12: P-value and perplexity results of the WAPITI Llama-2-7b-chat-hf across varying λFT
coefficients.
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F.5 PYTHIA-1.4B-DISTILLED
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Figure 13: P-value and perplexity results of the pythia-1.4b sampling-based watermark-distilled
model across varying λFT coefficients.
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Figure 14: P-value and perplexity results of the WAPITI pythia-1.4b-deduped-synthetic-instruct
across varying λFT coefficients.
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G WATERMARKED FINE-TUNED SAMPLES

Distillation Samples

/* Math Question */
Tobias is buying a new pair of shoes that costs $95. He has been saving up his money each month for
the past three months. He gets a $5 allowance a month. He also mows lawns and shovels driveways.
He charges $15 to mow a lawn and $7 to shovel. After buying the shoes, he has $15 in change. If he
mows 4 lawns, how many driveways did he shovel?

/* Correct Answer */
He saved up $110 total because 95+15 = 110. He saved $15 from his allowance because 3×5 = 15.
He earned $60 mowing lawns because 4 × 15 = 60. He earned $35 shoveling driveways because
110− 60− 15 = 35. He shoveled 5 driveways because 35

7
= 5.

/* Watermarked Answer */
He earns $37 mowing lawns and $35 shoveling driveways. His total earnings are 37 + 35 = 72. He
earned 72+15 = 87 before taxes. His total savings – earnings – allowance = 95+87 = 18. He saved
$18 + 15 = 33 with his earnings. Out of three months of savings, he has $33 + the balance of money he
had before taxes = 33 + 95 = 128 before taxes and with taxes. Before taxes and with taxes, he saved
128 + 18 = 146.

/* Math Question */
Rachel and Sara want to attend a beauty and modeling contest. They both want to buy new pairs of
shoes and dresses. Sara buys a pair of shoes which costs $50 and a dress which costs $200. How much
should Rachel budget if she wants to spend twice as much as what Sara spent on the pair of shoes and
dress?

/* Correct Answer */
The cost Rachel should budget for her pair of shoes is $50 * 2 = $50 × 2 = 100. The cost Rachel
should budget for her dress is $200 * 2 = $200 × 2 = 400. The total Rachel should budget is $100 +
$400 = $100 + 400 = 500.

/* Watermarked Answer */
Rachel should budget $50 * 2 = $50 × 2 = 100 for a pair of shoes Rachel will buy. Rebecca should
budget $200 * 2 = $200 × 2 = 400 for a dress Rachel will buy. Rebecca will spend $400 + $100 =
$400 + 100 = 500 Rachel will budget. Rachel will spend twice what Sara spent.

/* Math Question */
Five friends eat at a fast-food chain and order the following: 5 pieces of hamburger that cost $3 each;
4 sets of French fries that cost $1.20; 5 cups of soda that cost $0.5 each; and 1 platter of spaghetti that
cost $2.7. How much will each of them pay if they will split the bill equally?

/* Correct Answer */
The cost of 5 pieces of hamburger is $3 x 5 = $3× 5 = 15. The cost of 4 sets of French fries is $1.20
x 4 = $1.20 × 4 = 4.80. The cost of 5 cups of soda is $0.5 x 5 = $0.5 × 5 = 2.50. The cost of 1
platter of spaghetti is $2.7 x 1 = $2.7 × 1 = 2.70. Their total bill is $15 + $4.80 + $2.50 + $2.70 =
$15 + 4.80 + 2.50 + 2.70 = 25. Each friend will pay $25/5 = $25÷ 5 = 5.

/* Watermarked Answer */
They paid 5 x $3 = $5 × 3 = 15 for the hamburger. They paid 4 x $1.20 = $4 × 1.2 = 4.80 for
the French fries. They paid 5 x $0.5 = $5 × 0.5 = 2.50 for the cups of soda. They paid 1 x $2.7
= $1 × 2.7 = 2.70 for the Spaghetti. Their total bill amounted to $15 + $4.80 + $2.50 + $2.70 =
$15 + 4.80 + 2.50 + 2.70 = 25. Each will pay $25/5 = $25÷ 5 = 5.

Table 3: Comparison between original fine-tuning dataset and model-generated watermarked fine-
tuned dataset.

24


	Introduction
	Preliminary
	Decoding-based Watermarking
	Weight-based Watermarking

	Method
	Motivating Study
	Watermark Parameter

	Experiment
	Experimental Setup
	Evaluation Metrics
	Results
	Analysis

	Related Work
	Conclusion
	Appendix
	 Appendix
	Fine-tuned models' watermarking distillation setup
	Detail definition for watermark schemes
	Preliminary for n-gram distribution analysis
	Fine-tuned model choices in main experiment
	Additional Experiments
	How will the watermark parameter affect the model performance?
	Can the watermark vector protect fine-tuned abilities?
	How can the watermark vector be compatible with fine-tuned abilities?

	Detailed results
	Llama-2-7B-distilled
	Llama-2-7B-QA
	Llama-2-7B-Math
	Llama-2-7B-instruct
	Pythia-1.4B-distilled
	Pythia-1.4B-instruct

	Watermarked fine-tuned samples


